公告:新满多没有杂乱广告的网站, 请大家收藏!很好记,域名是 新满多 拼音!xinmanduo.com ! 更简洁好记的 ykyh.net

您的当前位置:首页 > 专利技术 > 正文 -- 手机或者平板访问

氧化铝烧结体及光学元件用基底基板的制作专利

来源:未知 编辑:晚一步 时间:2018-05-11

本发明涉及氧化铝烧结体及光学元件用基底基板。



背景技术:

以往,作为氧化铝烧结体,已知透明的氧化铝烧结体。例如,非专利文献1中,对加入了MgO的氧化铝悬浊液施加磁场,进行注浆成型,在真空中于1850℃进行5小时烧成,由此,制作具备取向粒子的透明的氧化铝烧结体。例如,施加12特斯拉的磁场而制作的氧化铝烧结体在波长600nm处的直线透过率为70.3%,取向度也较高,达97%。另外,施加8特斯拉的磁场而制作的氧化铝烧结体在波长600nm处的直线透过率为56%左右,取向度高,为78%。此外,随着磁场降低为6特斯拉、4特斯拉,直线透过率和取向度均有所降低。由这些结果得到结论如下:随着磁场的强度增加,直线透过率、取向度升高。

现有技术文献

非专利文献

非专利文献1:Ceramics International vol.38,pp5557-5561(2012)



技术实现要素:

但是,非专利文献1中,如果没有施加12特斯拉的高磁场,则取向度不会充分升高,无法得到直线透过率为50%以上的氧化铝烧结体。像这样的施加高磁场、同时进行注浆成型的装置目前仅存在于有限的设施中。此外,得到的烧结体具有较多的气孔。

本发明是为了解决该课题而实施的,其主要目的是提供一种直线透过率较高且透明性优异的氧化铝烧结体。

本发明的氧化铝烧结体的c晶面取向度为5%以上,且摇摆曲线测定中的XRC半值宽度为15.0°以下,该c晶面取向度是使用照射X射线时在2θ=20°~70°的范围内的X射线衍射图谱、利用Lotgering法而求出的,用D-SIMS(动态二次离子质量分析)测定时的F含量低于0.99质量ppm,结晶粒径为15~200μm,在用肉眼观察以倍率1000倍对纵向370.0μm×横向372.0μm的视野进行拍摄而得到的照片时,直径0.2~1.0μm的气孔的数量为25个以下。对于本发明的氧化铝烧结体,即便取向度不够高,直线透过率也较高,透明性也优异。得到像这样的优异的透明性的理由尚未确定,但是,认为是c晶面取向度、XRC半值宽度、F含量、结晶粒径以及直径0.2~1.0μm的气孔的数量分别为适当的值复合作用的结果。

本发明的光学元件用基底基板是包含上述的本发明的氧化铝烧结体的基板。作为光学元件,可以举出例如LED、LD、太阳能电池、传感器、光电二极管、光学部件、窗部件等。

附图说明

图1是倾角的说明图。

图2是板状氧化铝粒子的示意图,(a)是俯视图,(b)是主视图。

图3是用TGG法制作氧化铝烧结体的工序的示意图。

图4是发光元件10的截面简图。

图5是横型发光元件20的截面简图。

图6是表示纵型发光元件30的制造工序的截面简图。

图7是摇摆曲线测定的说明图。

图8是氧化铝烧结体的被研磨的截面的高倍率照片。

具体实施方式

本发明的氧化铝烧结体的c晶面取向度为5%以上,且摇摆曲线测定中的XRC半值宽度为15.0°以下,该c晶面取向度是使用照射X射线时在2θ=20°~70°的范围内的X射线衍射图谱利用Lotgering法求出的,用D-SIMS测定时的F含量低于0.99质量ppm,结晶粒径为15~200μm,在用肉眼观察以倍率1000倍对纵向370.0μm×横向372.0μm的视野进行拍摄而得到的照片时,直径0.2~1.0μm的气孔的数量为25个以下。

c晶面取向度是如下计算得到的:使用XRD装置(例如Rigaku制、RINT-TTR III),将氧化铝烧结体的规定截面(例如与c晶面平行的截面)研磨加工成平滑后,对该面照射X射线,使用此时在2θ=20°~70°的范围内的X射线衍射图谱,利用以下的式子算出c晶面取向度。c晶面是氧化铝的(006)晶面。式中,P是由本发明的氧化铝烧结体的XRD得到的值,P0是由标准α-氧化铝(JCPDS Card No.46-1212)计算得到的值。本发明的氧化铝烧结体是c晶面取向度为5%以上的氧化铝烧结体。c晶面取向度只要为5%以上即可,优选为10%以上,更优选为20%以上,更优选为60%以上,更优选为80%以上,进一步优选为90%以上,特别优选为96%以上。

另外,如JCPDS Card No.46-1212所示,c晶面、亦即氧化铝(006)晶面的衍射强度与其它指数晶面强度相比较小,因此,即便进行某一程度的取向,用Lotgering法求出的c晶面取向度也容易变小。因此,c晶面取向度5%表示进行了适当取向的状态。例如,公知的论文(Journal of the Ceramics Society of Japan,pp198-202(2011))中记载如下内容,即,用Lotgering法求出的氧化铝成型体的c晶面取向度与实际的取向度(取向粒子的比例)相比,明显较低。根据该论文的表2,在氧化铝成型体的Lotgering法的c晶面取向度为2.4%时,由双折射测定计算出来的c晶面取向粒子的比例相当于69%。因此,认为:在本发明的氧化铝烧结体的Lotgering法c晶面取向度为5%的情况下,至少70%以上的烧结粒子向c晶面取向。

【数学式1】

XRC半值宽度为用X射线摇摆曲线法(ω扫描)测定氧化铝基板的表面而得到的X射线摇摆曲线的半值宽度(XRC·FWHM)。XRC·FWHM为用于对氧化铝烧结体的取向轴(例如c轴)和各氧化铝粒子的结晶轴的倾斜(倾角)进行评价的指标,本发明的发明人发现,通过该倾角减小,使得透明性提高。图1中示出倾角的示意性说明图。从透明性的观点考虑,优选倾角较小。XRC·FWHM只要为15.0°以下即可,优选为10.0°以下,更优选为8.0°以下,更优选为5.0°以下,进一步优选为3.2°以下,特别优选为2.6°以下,更加优选为1.0°以下。

用D-SIMS测定时的F含量优选低于0.99质量ppm,优选为0.90质量ppm以下,更优选为检测限(0.1质量ppm)以下。Mg的含量用ICP(电感耦合等离子体)发光分析进行测定。Mg的含量优选为5000质量ppm以下,更优选为3000质量ppm以下,进一步优选为1000质量ppm以下,特别优选为500质量ppm以下,更加优选为350ppm以下。另外,Mg的含量优选为20质量ppm以上。作为Mg的添加形态,可以举出MgO、MgF2、MgNO3等。Al、O、Mg、C、F以外的杂质元素的含量优选为各10质量ppm以下。C优选为100质量ppm以下,更优选为70质量ppm以下,进一步优选为50质量ppm。对于这些元素的含量,例如,C、S可以用燃烧(高频加热)-红外线吸收法进行测定,N可以用惰性气体熔融-热导法进行测定,H可以用惰性气体熔融-非分散型红外线吸收法进行测定,除此以外的元素(主要为Si、Fe、Ti、Na、Ca、K、P、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Pb、Bi、Li、Be、B、Cl、Sc、Ga、Ge、As、Se、Br、Rb、Sr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、Hf、Ta、W、Ir、Pt、Au、Hg、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu)可以用ICP发光分析进行测定。

结晶粒径为烧结粒径的平均值。对于结晶粒径,对将氧化铝烧结体的规定截面(例如与c晶面平行的截面)镜面研磨而得到的面实施热蚀刻处理后,拍摄该面的图像,在得到的图像中,设定矩形的视野范围,在矩形的视野范围内画出2条对角线时,对于与对角线相交的所有粒子求出粒子内侧的线段的长度,将该线段的长度的平均值乘以1.5得到的值作为结晶粒径。结晶粒径只要为15~200μm即可,优选为20~200μm,更优选为25~100μm,更优选为40~100μm,进一步优选为45~95μm。

直径0.2~1.0μm(即直径为0.2μm以上且1.0μm以下)的气孔的数量如下计数。即,通过离子铣削对本发明的氧化铝烧结体的任意截面进行研磨后,利用扫描型电子显微镜将该研磨后的截面放大为倍率1000倍,按纵4张、横3张(纵向370.0μm×横向372.0μm)以成为连续照片的方式拍摄12张照片,所述照片是纵向92.5μm×横向124.0μm的视野中的照片,用肉眼观察这12张照片数出直径0.2~1.0μm的气孔的数量。通过离子铣削进行研磨是为了使其不会从截面发生脱粒。应予说明,作为使用离子铣削的研磨装置,例如可以举出日本电子制的截面抛光机。放大为倍率1000倍的照片中,气孔以黑点的形式出现,因此,只要是直径0.2~1.0μm的气孔尺寸,就能够通过肉眼观察来充分地识别。这样的气孔的数量只要为25个以下即可,优选为15个以下,更优选为10个以下,更优选为7个以下,更优选为5个以下,进一步优选为2个以下。

对于本发明的氧化铝烧结体,从该氧化铝烧结体中取出的厚度0.5mm的试样在波长300~1000nm处的直线透过率为高值(例如50%以上)。可以使用分光光度计(例如Perkin Elmer制、Lambda900)来测定直线透过率。应予说明,将试样的厚度换算为其它厚度的情况下,只要利用以下的换算式即可。该式引用自Scripta Materialia vol.69,pp362-365(2013)。式中,T1为直线透过率的实测值,T2为换算后的直线透过率,t1为厚度的实测值,t2为换算后的厚度,R为源自于材料的表面反射(氧化铝的情况下为0.14)。该直线透过率优选为55%以上,更优选为60%以上,进一步优选为70%以上。

T2=(1-R)(T1/(1-R))^(t2/t1)

本发明的氧化铝烧结体中,在c晶面取向度为5%以上且XRC半值宽度为15.0°以下、F含量为检测限以下(0.1质量ppm以下)、结晶粒径为20~200μm、气孔的数量为10个以下的情况下,透明性进一步增加,故优选。即,当从该氧化铝烧结体中取出厚度0.5mm的试样来测定在波长300~1000nm处的直线透过率时,测定值为55%以上。

本发明的氧化铝烧结体中,在c晶面取向度为60%以上且XRC半值宽度为5.0°以下、F含量为检测限以下、结晶粒径为40~95μm、气孔的数量为7个以下的情况下,透明性进一步增加,故优选。即,当从该氧化铝烧结体中取出厚度0.5mm的试样来测定在波长300~1000nm处的直线透过率时,测定值为60%以上。

本发明的氧化铝烧结体中,在c晶面取向度为60%以上且XRC半值宽度为5.0°以下、F含量为检测限以下、结晶粒径为45~95μm、气孔的数量为5个以下的情况下,透明性更进一步增加,故优选。即,当从该氧化铝烧结体中取出厚度0.5mm的试样来测定在波长300~1000nm处的直线透过率时,测定值为70%以上。

本发明的氧化铝烧结体中,在c晶面取向度为96%以上且XRC半值宽度为2.6°以下、F含量为检测限以下、结晶粒径为45~95μm、气孔的数量为3个以下的情况下,透明性更进一步增加,故优选。

本发明的氧化铝烧结体可以用作用于形成膜的基底基板,例如可以用作用于形成GaN、ZnO、AlN、SiC、InN等的膜的基底基板。本发明的氧化铝烧结体优选在成膜之前对表面进行研磨。由此,表面的凹凸消失,因此,容易成膜,并且,不易在膜上产生缺陷。

本发明的氧化铝烧结体例如可以通过如下方法制造:按板状氧化铝粉末与微细氧化铝粉末的混合比例以质量比计为T:(100-T)时T为0.001以上且低于1来调制包含板状氧化铝粉末和微细氧化铝粉末的氧化铝原料粉末,将包含该氧化铝原料粉末的成型用原料成型,制成为成型体,对该成型体进行烧成,由此,制造本发明的氧化铝烧结体,其中,板状氧化铝粉末的纵横尺寸比为3以上,微细氧化铝粉末的平均粒径比板状氧化铝粉末的平均粒径小。

板状氧化铝粉末的纵横尺寸比为平均粒径/平均厚度。此处,平均粒径为粒子板面的长轴长的平均值,平均厚度为粒子的短轴长的平均值。用扫描型电子显微镜(SEM)观察板状氧化铝粉末中的任意100个粒子来确定这些值。图2是板状氧化铝粒子的示意图,(a)是俯视图,(b)是主视图。板状氧化铝粒子在俯视观察时的形状为大致六边形,其粒径如图2(a)所示,厚度如图2(b)所示。通过使用包含纵横尺寸比为3以上的板状氧化铝粉末的氧化铝原料粉末,使得最终得到的氧化铝烧结体的取向度升高。从高取向化的观点考虑,优选板状氧化铝粉末的平均粒径较大,优选为1.5μm以上,更优选为5μm以上,进一步优选为10μm以上,特别优选为15μm以上。但是,从致密化的观点考虑,优选板状氧化铝粉末的平均粒径较小,优选为30μm以下。因此,为了兼具有高取向和致密化,平均粒径优选为1.5μm~20μm。

成型前的混合粉末的F含量优选设定为烧成后的氧化铝烧结体中包含的F的含量低于0.99质量ppm,更优选设定为0.90质量ppm以下,进一步优选实质上为零(检测限以下)。通过将包含板状氧化铝粉末和微细氧化铝粉末的混合粉末成型,使得在成型时(流延成型、挤压成型、浇铸成型、注射成型、单轴压制成型等)板状粒子容易取向。另外,在烧成时,板状氧化铝粉末成为晶种(模板),微细氧化铝粉末成为基质,模板拉拢基质的同时进行同质外延生长。这样的制法被称为TGG(Templated Grain Growth)法。将用TGG法制作氧化铝烧结体的工序的示意图示于图3。TGG法中,可以通过板状氧化铝粉末和微细氧化铝粉末的粒径、混合比来控制得到的氧化铝烧结体的微观结构,与对板状氧化铝粉末单体进行烧成的情形相比,容易致密化,取向度容易提高。

对成型体进行烧成时的烧成温度(最高到达温度)优选为1800℃以上,更优选为1850℃以上,更优选为1850~2050℃,进一步优选为1900~2000℃。另外,烧成方法优选加压烧成。作为加压烧成,可以举出例如热压烧成、HIP烧成、等离子体放电烧成(SPS)等。应予说明,可以在加压烧成前进行常压预烧成。在进行HIP烧成时,还可以使用封装法。热压烧成时的压力优选为50kgf/cm2以上,更优选为200kgf/cm2以上。HIP烧成时的压力优选为1000kgf/cm2以上,更优选为2000kgf/cm2以上。烧成气氛没有特别限定,优选大气、氮、Ar等不活泼气体、真空气氛下中的任一者,特别优选氮、Ar气氛下,最优选氮气氛。氮气氛良好的理由尚未确定,但是,得到高透明性。在从烧成中的最高到达温度进行降温时,可以立刻卸压,不过,也可以施加50kgf/cm2以上的压制压力至规定温度(在1000~1400℃(优选为1100~1300℃)的范围内设定的温度),然后卸压。

本发明的光学元件用基底基板是包含上述的本发明的氧化铝烧结体的基板。作为光学元件,可以举出发光元件、受光元件。例如通过在本发明的光学元件用基底基板形成GaN层,与将蓝宝石用于基底基板的情形相比,能够用作大型且便宜的LED等的发光基板。本发明的光学元件用基底基板透明,因此,可以利用激光剥离进行基板剥离。另外,在没有剥离基底基板的情况下,从基底基板侧也可以获得光。应予说明,除了GaN层以外,还可以形成ZnO层、AlN层、InN层等。

以下,示出将本发明的光学元件用基底基板用于发光元件的例子。如图4所示,发光元件10包括基底基板12和形成在基底基板12上的发光功能层14。发光功能层14是通过施加电压而基于LED的发光原理进行发光的层,此处,自靠近基底基板12的一侧依次层叠有n型层14c、活性层14b、p型层14a。该发光功能层14由GaN系材料、ZnO系材料、AlN系材料等制作。

对于横型发光元件20,如图5所示,形成为n型层14c的表面在发光元件10中的发光功能层14的外周部成为台阶面,在n型层14c的台阶面安装有阴极电极22,在p型层14a的表面隔着透光性阳极电极24设置有阳极电极焊盘25。根据该横型发光元件20,电流不仅在发光功能层14的法线方向流动,还在水平方向流动。

对于纵型发光元件30,如图6的下部所示,在发光功能层14的n型层14c的表面安装有阴极电极34,并在p型层14a的表面隔着阳极电极32安装有安装基板16。该纵型发光元件30是通过以下方式制作的:在发光元件10(图6的上部)的p型层14a的表面形成阳极电极32,将阳极电极32接合于安装基板16(图6的中部),利用激光剥离法除去基底基板12,在暴露出来的n型层14c的表面形成阴极电极34,由此制作纵型发光元件30。根据该纵型发光元件30,电流在发光功能层14的法线方向流动。能够像这样地利用激光剥离法是因为基底基板12的直线透过率较大且透光性较高。另外,本发明的透明氧化铝烧结体除了可以用于光学元件用基底基板、光学元件以外,还可以用于外延生长用基板、静电卡盘等。

【实施例】

[实验例1]

1.氧化铝烧结体的制作

(1)粉末混合、流延成型

将市售的板状氧化铝粉末(YFA10030、Kinseimatec制、平均粒径10μm、平均厚度0.35μm、纵横尺寸比29)0.9质量份和微细氧化铝粉末(TM-DAR、平均粒径0.1μm、大明化学制)99.1质量份混合,制成混合氧化铝粉末。如果将板状氧化铝粉末与微细氧化铝粉末的质量比用T:(100-T)表示,则T=0.9。在该混合氧化铝粉末100质量份中加入氧化镁(500A、Ubematerials制)0.0125质量份(125质量ppm)、作为粘合剂的聚乙烯醇缩丁醛(产品编号BM-2、积水化学工业制)7.8质量份、作为增塑剂的二(2-乙基己基)邻苯二甲酸酯(黑金化成制)3.9质量份、作为分散剂的失水山梨糖醇三油酸酯(Rheodol SP-O30、花王制)2质量份、以及作为分散介质的2-乙基己醇,进行混合。分散介质的量按浆料粘度为20000cP进行调整。将像这样调制的浆料通过刮刀法按干燥后的厚度为20μm在PET膜上成型为片状。将得到的带切成直径50.8mm(2英寸)的圆形后,层叠150张,载放于厚度10mm的Al板上,然后,放入箱体中并使内部为真空,由此得到真空包装。将该真空包装在85℃的温水中以100kgf/cm2的压力进行等静压压制,得到圆板状的成型体。

(2)烧成

将得到的成型体配置在脱脂炉中,在600℃、10小时的条件下进行脱脂。将得到的脱脂体使用石墨制的模具以热压在氮气中、烧成温度(最高到达温度)1975℃、4小时、表面压力200kgf/cm2的条件下进行烧成,得到氧化铝烧结体。应予说明,在从烧成温度进行降温时,维持压制压力至1200℃,在低于1200℃的温度区域,将压制压力释放为零。

(3)表面研磨

使用金刚石磨粒,对得到的氧化铝烧结体的板面的表面和背面进行镜面研磨,使厚度为0.5mm,将研磨后的烧结体(试样)以丙酮、乙醇、离子交换水的顺序分别清洗10分钟,得到c晶面取向度、直线透过率、密度(观察有无气孔)用的试样。

2.氧化铝烧结体的特性

(1)c晶面取向度的计算

为了确认得到的氧化铝烧结体的取向度,利用XRD测定c晶面取向度。对于镜面研磨后的氧化铝烧结体,在使用XRD装置(Rigaku制、RINT-TTR III)对其研磨面照射X射线时的2θ=20~70°的范围内测定XRD图谱。具体而言,使用CuKα射线在电压50kV、电流300mA这样的条件下进行测定。通过Lotgering法计算c晶面取向度。具体而言,利用前述的式子进行计算。实验例1的氧化铝烧结体的c晶面取向度为100%。

(2)摇摆曲线测定

像图7那样,使X射线源和检测器联动,对氧化铝烧结体的板面(与c晶面取向度测定相同的面)进行扫描,测定得到的曲线的半值宽度(XRC·FWHM)。将像这样将2θ(检测器与入射X射线所成的角度)的值固定于其衍射峰位置并仅扫描ω(试样基板面与入射X射线所成的角度)的测定方法称为摇摆曲线测定。装置使用Rigaku制的RINT-TTR III,使用CuKα射线,在电压50kV、电流300mA的条件下,使ω的扫描范围为3.8°~38.8°。实验例1的氧化铝烧结体的XRC·FWHM为3.2°。

(3)纯度

(3-1)F的定量分析

利用D-SIMS(CAMECA制IMS-6f)对镜面研磨后的氧化铝烧结体进行分析。测定条件如下所述。

·一次离子种:Cs+

·一次离子加速能量:14~15eV

·二次离子极性:Negative

·电荷补偿:E-gun

·溅射循环:100~500循环

将200-300溅射循环间的平均值用作F量。在定量分析时,在与分析试样相同的条件下,测定组成(AlO)与分析试样相同的浓度已知的标准试样,求出相对灵敏度系数,进行定量。结果,烧结体中的F量为检测限(0.1质量ppm)以下。

(3-2)Mg的定量分析

将氧化铝烧结体用纯度99.9%的氧化铝研钵粉碎后,利用基于JISR1649的加压硫酸分解法,将板状氧化铝粉末溶解,利用ICP(电感耦合等离子体)发光分析装置(日立高新科技制PS3520UV-DD)进行定量分析。检测到实验例1的氧化铝烧结体的Mg量为64质量ppm。

(3-3)其它元素的定量分析

C、S:使用碳·硫分析装置(LECO制CS844),利用燃烧(高频加热)-红外线吸收法进行分析。

N:使用氧·氮分析装置(堀场制作所制EMGA-650W),利用惰性气体熔融-热导法进行分析。

H:使用氢分析装置(堀场制作所制EMGA-921),利用惰性气体熔融-非分散型红外线吸收法进行分析。

上述以外的杂质元素(主要为Si、Fe、Ti、Na、Ca、Mg、K、P、V、Cr、Mn、Co、Ni、Cu、Zn、Y、Zr、Pb、Bi、Li、Be、B、Cl、Sc、Ga、Ge、As、Se、Br、Rb、Sr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Te、Cs、Ba、Hf、Ta、W、Ir、Pt、Au、Hg、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu):利用依据JISR1649的加压硫酸分解法,将板状氧化铝粉末溶解,利用ICP(电感耦合等离子体)发光分析装置(日立高新科技制PS3520UV-DD)进行分析。

(4)气孔

使用金刚石磨粒,对得到的氧化铝烧结体的任意截面进行预研磨,然后,用截面抛光机(CP)(日本电子制、IB-09010CP)进行研磨。CP属于离子铣削的范畴。使用CP是因为不会在研磨面发生脱粒。利用扫描型电子显微镜(日本电子制、JSM-6390)对得到的截面进行拍摄。对于观察的倍率,具体而言,将以倍率1000倍对纵向92.5μm×横向124.0μm的视野进行拍摄而得到的照片排列成纵4张、横3张的连续照片(纵向370.0μm×横向372.0μm),通过肉眼观察,数出直径0.2~1.0μm的气孔的数量。通过使倍率为1000倍,能够用肉眼观察来判别更微细的气孔。实验例1的氧化铝烧结体中确认到的气孔数为7个。应予说明,气孔的直径为气孔的外周上的2个定点的距离最大的长度。

(5)结晶粒径

将镜面研磨后的氧化铝烧结体放入纯度99.5质量%的高纯度氧化铝制的匣钵(容积750cm3)中,在大气中于1550℃进行45分钟的热蚀刻处理。通过进行本热蚀刻处理,蚀刻速度在粒内部和晶界部不同,因此,能够鲜明地观察到晶界。利用扫描型电子显微镜(日本电子制、JSM-6390)对进行了该热蚀刻处理的面的图像进行拍摄。视野范围如下设定。即,在得到的图像上配置长方形而画出其对角线的情况下,以任意一个对角线均与10个~30个粒子相交的方式设定长方形的尺寸,将该长方形设定为视野范围。然后,对于与该长方形的2条对角线相交的所有粒子,对各粒子的内侧线段的长度进行平均,将平均值乘以1.5得到的值作为板面的平均粒径。实验例1的氧化铝烧结体的平均粒径(结晶粒径)为44μm。

(6)直线透过率

将得到的氧化铝烧结体切成10mm×10mm的大小,在的金属制平台的最外周部每隔90°固定一个,共4个,在SiC研磨纸上,在仅施加了金属制平台和研磨夹具的载荷(合计1314g)的状态下,以#800精研(预研磨)10分钟,以#1200精研(预研磨)5分钟。然后,在陶瓷平台上,使用金刚石磨粒进行精研。以磨粒尺寸1μm精研30分钟,然后,以磨粒尺寸0.5μm精研2小时。将研磨后的10mm×10mm×0.5mm厚的试样以丙酮、乙醇、离子交换水的顺序分别清洗3分钟,然后,使用分光光度计(Perkin Elmer制、Lambda900),测定在波长300~1000nm处的直线透过率。实验例1的氧化铝烧结体在波长300~1000nm处的直线透过率为60.4%以上。

将以上的实验例1的氧化铝烧结体的制造条件以及特性汇总于表1。应予说明,在表1的直线透过率栏中记载了在波长300~1000nm处的直线透过率的最小值。

【表1】

[实验例2~13]

对于实验例2~13,依据实验例1,在表1所示的氧化铝烧结体的制造条件下,制作氧化铝烧结体。具体而言,对于实验例2、3,使烧成温度分别为1900℃、1850℃,除此以外,与实验例1同样地制作氧化铝烧结体。对于实验例4~7、9~12,使T(混合氧化铝粉末中的板状氧化铝粉末的质量%)为表1中给出的值,除此以外,与实验例1同样地制作氧化铝烧结体。对于实验例8,在烧成温度1975℃、2小时、表面压力1886kgf/cm2的条件下,进行HIP烧成,得到氧化铝烧结体。HIP烧成中,在1975℃的保持结束后,以保持表面压力1000kgf/cm2以上的高压的状态降温至1200℃。对于实验例13,使T为2且烧成温度为1800℃,除此以外,与实验例1同样地制作氧化铝烧结体。对于这些氧化铝烧结体,求出上述2.(1)~(5)的特性。将其结果示于表1。

[实验例14~22]

对于实验例14~22,依据实验例1,在表1所示的氧化铝烧结体的制造条件下,制作氧化铝烧结体。

对于实验例14、19~22,在下述所示的制造条件下,制作板状氧化铝粉末,与微细氧化铝粉末混合,制作烧结体。溶剂为IPA(异丙醇),使用的氧化铝球,将高纯度γ-氧化铝(TM-300D、大明化学制)96质量份、高纯度AlF3(关东化学制、鹿特级)4质量份、作为晶种的高纯度α-氧化铝(TM-DAR、大明化学制、D50=1μm)0.17质量份在罐磨机中混合5小时。得到的混合粉末中的F、H、C、S以外的杂质元素的质量比例的合计为1000ppm以下。将得到的混合原料粉末300g放入纯度99.5质量%的高纯度氧化铝制的匣钵(容积750cm3)中,盖上纯度99.5质量%的高纯度氧化铝制的盖子,在电炉内,空气流中,900℃进行3小时的热处理。空气的流量为25000cc/min。将热处理后的粉末在大气中、于1150℃进行40小时的退火处理后,使用的氧化铝球进行4小时的粉碎,得到平均粒径2μm、平均厚度0.2μm、纵横尺寸比10的板状氧化铝粉末。利用扫描型电子显微镜(SEM)观察板状氧化铝粉末中的任意100个粒子来确定粒子的平均粒径、平均厚度。平均粒径为粒子的长轴长的平均值,平均厚度为粒子的短轴长的平均值,纵横尺寸比为平均粒径/平均厚度。得到的板状氧化铝粉末为α-氧化铝。

实验例17、18中,使用市售的板状氧化铝粉末(YFA00610、Kinseimatec制、平均粒径0.6μm、平均厚度0.06μm、纵横尺寸比10),制作烧结体。对于这些氧化铝烧结体,求出上述2.(1)~(5)的特性。将其结果示于表1。

[评价]

对于实验例1~11、14~19的氧化铝烧结体,c晶面取向度均为5%以上,XRC半值宽度均为15.0°以下,F含量均为检测限以下,结晶粒径均为15~200μm,直径0.2~1.0μm的气孔的数量均为25个以下。在这些实验例中得到的氧化铝烧结体的厚度为0.5mm时,在波长300nm~1000nm处的直线透过率为50%以上,直线透过率较高,透明性优异。得到像这样的优异的透明性的理由尚未确定,但是,认为是c晶面取向度、XRC半值宽度、F含量、结晶粒径以及直径0.2~1.0μm的气孔的数量分别为适当的值复合作用的结果。

另外,对于实验例1、2、4~11、14、16~19,c晶面取向度为5%以上,XRC半值宽度为15.0°以下,结晶粒径为20~200μm,直径0.2~1.0μm的气孔的数量为5个以下。在这些实验例中得到的氧化铝烧结体的厚度为0.5mm时,在波长300nm~1000nm处的直线透过率为55%以上,透明性更优异。

进而,对于实验例1、4~10、16,c晶面取向度为60%以上,XRC半值宽度为5.0°以下,结晶粒径为45~95μm,直径0.2~1.0μm的气孔的数量为5个以下。在这些实验例中得到的氧化铝烧结体的厚度为0.5mm时,在波长300nm~1000nm处的直线透过率为60%以上,透明性更加优异。其中,特别是实验例9的氧化铝烧结体的直线透过率为78%以上,与其它实验例的氧化铝烧结体相比,格外高。

另一方面,实验例12的c晶面取向度低至1.2%(低于5%),实验例13的气孔数量多达112个(超过100个),因此,直线透过率均较低。实验例20的XRC半值宽度较大,达15.9°(超过15°),实验例21的c晶面取向度低至1.4%(低于5%),实验例22的烧结体的平均粒径较大,达211μm(超过200μm),因此,直线透过率均较低。

应予说明,实验例1~11、14~19相当于本发明的实施例,实验例12、13、20~22相当于比较例。本发明并不受上述的实验例任何限定,当然只要属于本发明的技术范围、就可以以各种方案进行实施。

本申请将2015年9月30日申请的日本专利申请第2015-193943号作为主张优先权的基础,其全部内容通过引用而包含在本说明书中。

产业上的可利用性

本发明可用于例如LED、LD、太阳能电池、传感器、光电二极管、光学部件、窗部件等光学元件。

符号说明

10发光元件、12基底基板、14发光功能层、14a p型层、14b活性层、14c n型层、16安装基板、20横型发光元件、22阴极电极、24透光性阳极电极、25阳极电极焊盘、30纵型发光元件、32阳极电极、34阴极电极。

再多了解一些 完整全部详细技术资料下载
 
手机扫描本二维码

分享创意到朋友圈
上一篇: 可靠信道辅助式混合ARQ的制作专利
下一篇:没有了

网友评论:

栏目分类


Copyright © 2006-2017 新满多 渝ICP备11004546号-1

如有侵犯,请联系我们:Gaocheng365@live.com

Top